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 

Abstract—For power system effective control, operation, 

planning, and management it is necessary to solve multiple 

objectives simultaneously subjected to the requirements. In this 

paper, e-constrained optimization algorithm, one of the popular 

multi-objective optimization methods, is used to calculate the 

maximum possible load on a given system without violation of 

constraints in terms of loadability factor. There is a possibility in 

getting loadability on a given system by sacrificing some other 

objectives simultaneously. The used method can formulate multi-

objective optimization function and can be solved by keeping 

other objective functions within its e-constrained values. Finally 

effective fuzzy decision making tool is used to select best optimal 

solution from the entire Pareto solutions generated. The complete 

working procedure is tested on the IEEE-30 bus system with 

supporting results. 

 
Index Terms—Multi-objective optimization, e-constrained 

approach, Generation Cost, Emission, Losses, Voltage Stability 

Index, Loadability. 

I. INTRODUCTION 

OWER system effective planning includes optimal power 

generation, monitoring, controlling in different aspects. 

This can be performed by performing optimal power flow 

(OPF) on a given system [1, 2].  

Power system engineers needs a lot of competence and 

specially designed tools to analyze and to control, power 

system operation, planning and management. Effective power 

system operation includes proper control over the system 

objectives, namely generation fuel cost, emission of 

generating units, real power loss, Voltage Stability Index 

(VSI) and system loadability etc. Generally, Optimal Power 

Flow (OPF) is used to analyze the power system, and to 

minimize/maximize any one of the above objectives subjected 

to equality and inequality constraints. The continuous and 

uncontrollable growth in demand for electricity needs 

construction of new transmission lines or extending the 

capacity of existing generating stations/substations. But these 

are very expensive and time consuming; hence there is a 

possibility to meet certain objectives in the system by 

sacrificing some other objectives simultaneously. 

Optimal power flow problem with fuel cost function as an 

objective is being solved by developing real-coded genetic 

algorithm [3]. Same technique is used to solve OPF problem 

to improve system security [4]. A multi-objective optimization 

problem with four different objective functions namely, fuel 

cost, emission of the generators, real power loss in a 

transmission system and the security margin index is being 

solved by using evolutionary approaches [5]. Strength Pareto 

 
 

evolutionary algorithm is developed to solve multi-objective 

optimization problem with fuel cost and voltage stability index 

as the objectives [6]. Similar problem formulation with the 

same technique subjected to hard constraints is solved in [7]. 

A non-linear predictor-corrector primal-dual interior point 

method [8] and the environmental-economic planning problem 

is solved by forming multi-objective OPF [9]. Particle Swarm 

Optimization (PSO) based multi-objective optimization 

problem with transmission real power loss and voltage profile 

improvement as objectives via handling inequality constraints 

with the help of penalty method [10]. Three objective 

functions, fuel cost, power loss, and voltage deviation as 

objectives is being solved by developing enhanced PSO based 

multi-objective OPF problem [11]. In [12], bacteria foraging 

based algorithm is developed to solve multi-objective 

optimization problem with the loss and voltage stability limits 

are as objectives. 

Then, there is need of optimal methodology to control some 

of the objectives based on the system requirements. This type 

of problem combines more than one objective function results 

many solutions instead of single optimal solution that 

simultaneously optimizes all the objective functions, the 

decision making tool is used for the “most preferred” solution 

in contrast to the optimal solution. In this type of problems, 

the concept of optimality is replaced by that of Pareto 

optimality that cannot be improved in one objective function 

without violating its performance in at least one of the rest. In 

this paper, the main objective is to propose a multi-objective 

solution methodology by using e-constraint approach and an 

effective decision making tool to select the good solution 

instead of local best solution. This Multi-Objective E-

Constrained Optimization (MOECO) approach has been 

verified on the test systems. The analysis and the encouraging 

results gives support to handle multi-objective optimization 

problem with the proposed methodology. 

II. E-CONSTRAINED METHOD 

The e-constraint method optimizes one of the objective 

functions while the other objective functions are considered as 

constants [13-16]. 

minF1(x) 
Subjected to F2(x)  ≤  e2 , F3(x)  ≤  e3… . Fp(x)  ≤  ep 

Where, subscript p indicates the number of objective 

functions. 

The significance of this method over the conventional 

methods is in terms of generating the most effective solution. 

It requires less number of runs to produce different effective 

solution with best Pareto front. This method overcomes the 

pitfall problem [17, 18], while the conventional methods 
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cannot produce unsupported efficient solutions in multi-

objective optimization problems. Scaling of the objective 

functions is not necessary [13]. The number of effective 

solutions can be controlled by adjusting interval of the 

objective functions range.  

Bicriterian optimization problems based on e-constraint 

methodology has been studied in [19-21] to improve the 

performance and effectiveness of the solution. 

Apart from all the discussions, this method needs the 

calculation of the objective functions range, number of 

intervals to get efficient solution, and the proper selection 

criteria to select better solution instead of best solution. The 

efficiency and effectiveness of the existing method is 

addressed. 

III. STOCHASTIC PROBLEM FORMULATION 

In general, aggregating the objectives and constraints, the 

OPF problem can be mathematically formulated as follows: 

minimize /  maximize Fn              ∀ n ∈ p 

subjected to g(x, u) = 0 

h(x, u) ≤ 0 

where ‘p’ indicates the number of objective functions, 

g(x,u) and h(x,u) are the set of equality and inequality 

constraints, respectively.  

In this method single objective function is formulated to 

solve multi-objective optimization problem and penalty 

approach is used to handle inequality constraints. 

In this paper, five objective functions considered and are 

generation fuel cost, emission, system power loss, voltage 

stability index and loadability. These objective functions are 

formulated as follows. 

A. The generation fuel cost:  

The objective function is used to minimize the total 

generation fuel cost and can be expressed as 

F1  =  FC(PGi)  =  ∑aiPGi
2

NG

i=1

+ biPGi + ci   $/h            (1) 

where NG is the number of generators, ai, bi and ci are the 

cost coefficients and PGi  is the real power output of 

ith generator. 

B. The emission:  

Due to the limitations imposed by the Act 1990 [22], best 

feasible option is to operate the system as environmental 

friendly. The total ton/h atmospheric pollutants such as 

Sulpher oxides SOx and Nitrogen oxides NOx  emitted by 

E(PGi) [5] is expressed as 

F2  =  E(PGi) =∑ (αi + βi PGi + γiPGi
2

NG

i=1

+ ξ
i
 exp(λiPGi))    ton/h                   (2) 

where αi, βi, γi, ξi and λi are emission coefficients of the ith 

generator.  

C. Real power losses:  

In power system to enhance power delivery performance, 

one of the important issues to be considered is active power 

loss and can be calculated as 

F3  =  Losses (L)                          (3) 

                         =  ∑ gi[Vi
2 + Vj

2 − 2ViVj cos(δi − δj)] MW

Nline

i=1

 

where Nline is total number of transmission lines, gi is the 

conductance of ith line which connects buses i and j. 
Vi ,  Vj  and  δi, δj are voltage magnitude and angle of 

ith and jth buses. 

D. Voltage Stability Index: 

 L − index (Lj) [2] of the load buses is considered to 

monitor the voltage stability in power system. The value of 

this L − index is in the range of ‘0’ (no load on the system) to 

‘1’ (system voltage collapse). The voltage stability index at 

jth bus and can be defined as  

F4  =  Lj = |1 −∑Fji
Vi
Vj

NG

i=1

| ;  j = NG + 1,− − n    (4) 

[F] = −[YLL]
−1[YLG] 

All quantities within the sigma in the RHS of Lj are 

complex quantities. The values [Fji] are obtained from Y bus 

matrix. At all load buses, VSI for the given load condition are 

computed and the maximum value of L − indices infers the 

proximity of the system to voltage collapse. 

E. The system loadability:  

This objective is used to maximize the system loadability 

that can be described as [23] 

F5  =  Loadability =  λ(x, u) 
and λ can be obtained by assuming the constant power 

factor at each load in the real and reactive power balance 

equations as follows: 

∑PG,i
∀i

− ∑(1 + λ)PLoad,j 
∀j

− ∑PLosses,k
∀k

= 0   − −(5) 

∑QG,i
∀i

− ∑(1 + λ)QLoad,j 
∀j

− ∑QLosses,k
∀k

= 0 − −(6) 

PLoad,j  and QLoad,j are the real and reactive power loads at 

jth bus under base case condition (λ=0), 

PLosses,k and QLosses,k are real and reactive power losses in kth 

transmission line 

F. Equality constraints: 

The equality constraints g(x,u) are the nonlinear power flow 

equations which are formulated as follows 

Power balance constraint 

∑PG = ∑PLoad +∑PLosses 

∑QG = ∑QLoad +∑QLosses 

G. In-equality constraints: 

The inequality constraints h(x,u) are limits of control 

variables and state variables. Generator active power(PG), 
reactive power(QG), and Voltage (VG) are restricted by their 

limits as follows: 

PGi
min  ≤  PGi  ≤   PGi

max;         ∀ i ∈  NG 

QGi
min  ≤  QGi  ≤   QGi

max;        ∀ i ∈  NG 

VGi
min  ≤  VGi  ≤   VGi

max;         ∀ i ∈  NG 

The constraints of voltages at load buses VL and 

transmission loading SL are represented as: 

VLi,min  ≤ VLi  ≤  VLi,max   ;        i = 1,2,3,…… . . nL 
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SLi  ≤  SLi
max;        i = 1,2,3,…… . . nl 

where nL is the number of transmission lines and nl is the 

number of load buses. 

The inequality constraints on control (independent) variable 

limits are given by 

Ti
min  <  Ti  <  Ti

max;   i = 1,2,3,…… . . nt 

QCi
min  <  Qci  <  QCi

max;   i = 1,2…… . . nc 

where nt is the number of tap changing transformers and nc 
is the number of switchable VAr sources. 

H. Constraints handling: 

In this constraints handling method, the augmented function 

F(x) is defined as the sum of the objective function f(x) and a 

penalty term which depends on the constraint violation h(x). 

F(x) = f(x) + ∑ λj (hj(x))
2

n

j=1

 

where, ‘n’ is the number of inequality constraints, hj(x) 

values are the absolute values of the constraints. The 

parameter λj is the penalty coefficient of the jth inequality 

constraint and it is user defined parameter. In this problem, the 

equality constraints are met by the load flow solution, VG, 

QC and Tap values are enforced during the population coding. 

Hence effectively, the inequality constraints to be handled 

here are slack bus real power generation (PG,Slack), VL, QG and 

SL.  

The penalized objective function can be written as the sum 

of unpenalized objective function (f(x)) plus penalty terms. 

Faug(x) = f(x) +  λp (PGSlack − PGSlack
limit)

2
+ λv  (∑(VLi − VLi

limit)
2

nL

i=1

) 

+ λq  (∑(QGi − QGi
limit)

2

NG

i=1

) + λs  (∑(SLi − SLi
limit)

2

nl

i=1

)     

where λp, λv, λq and λs are respective penalty factors. Let 

xlimit is the limit value of the dependent variable ‘x’, given as 

xlimit = {
xmax, 𝑥 > xmax

xmin, 𝑥 < xmin
 

Since the order of magnitude violation is different for 

different constraints, it is difficult to find a unique value 

for λp, λv, λq and λs. These can be fixed only by trial and error 

method and problem dependent [24]. 

IV. MULTI-OBJECTIVE E-CONSTRAINED APPROACH (MOECO) 

This section describes the procedure to formulate multi-

objective optimization problem. 

A. Calculate individual objective functions 

Initially, all the system objectives are solved individually 

based on their nature. i.e cost, emission, loss and VSI 

objective functions are minimized and the loadability 

objective is maximized. The corresponding values are 

tabulated in Table.1.  

B. Create pay-off table 

In order to properly handle this method, the range of every 

objective function at least for the ‘p-1’ objective functions are 

required that can be used as constraints. The range of these 

objective functions formulates pay-off table (the table with the 

results from the individual optimization of the ‘p’ objective 

functions).  

C. Generate objective e-constrained values 

The range of the jthobjective function is obtained among the 

minimum and maximum values of the jth column of the payoff 

table that is divided into ‘q’ equal intervals using (q − 1) 
intermediate equidistant grid points. Thus, we have a total of 

(qj + 1) grid points for the jth objective function. The density 

of the pareto optimal set representation can be controlled by 

properly assigning the values to the ‘q’. The higher number of 

grid points leads to the denser representation of the Pareto 

optimal set but with the cost of higher computation time. In 

this paper, the number of intervals for the objective functions 

is selected to be 100.  

D. Formulate multi-objective function 

In order to deal with the multi-objective optimization 

problem can be formulated with five objective functions F1, 

F2, F3, F4, and F5 using e-constraint approach is as follows 

minF1(x) 
Subjected to F2(x)  ≤  e2 , F3(x)  ≤  e3, F4(x)  ≤

 e4 and , F5(x)  ≤  e5 

e2,i(x) =  max(F2) − (
max(F2) − min(F2)

interval 
) . i       ∀ i

= 0,1,2,…… , interval 

e3,j(x) =  max(F3)− (
max(F3) −min(F3)

interval
) . j        ∀ j

= 0,1,2,…… , interval 

e4,k(x) =  max(F4) − (
max(F4) −min(F4)

interval
) . k      ∀ k

= 0,1,2,…… , interval 

e5,l(x) =  min(F5) + (
max(F5) −min(F5)

interval
) . l       ∀ l

= 0,1,2,…… , interval 
where max(.) and min(.) represent the respective maximum 

and minimum values of the individual objective functions 

after optimization. 

E. Solution using PSO 

Here, the formulated multi objective optimized function is 

solved using PSO method [24, 25]. This method consists, 

initializing the population, weight updating, velocity updating, 

position updating, local best updating, global best updating. 

The penalty functions are added to the formulated multi-

objective optimized function to form augmented function to 

calculate fitness. 

F. Generate Pareto front set 

The final converged values correspond to the problem 

intervals are considered as the generated Pareto values. These 

are the best Pareto solutions from the generated solutions 

towards the problem optimization. Weightage to the objectives 

is assigned based on the requirements and the final selection is 

performed using fuzzy decision making tool. 

G. Selection of best value 

The decision maker needs to choose the optimal solution 

according to the requirement among all the Pareto optimal 

solutions. In this paper, a fuzzy decision making tool approach 

is proposed for the optimal selection of solution where a linear 

membership functions (μ
m

) is defined for each objective 

function as follows: 
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μ
m
= 

{
 

 
    1           ; for           Fm  ≤    Fm

min

Fm
max − Fm

Fm
max − Fm

min
  ; for   Fm

min  <  𝐹m  <    Fm
max 

       0           ; for           Fm  ≥    Fm
max

 

for minimization of objectives and 

μ
m
= 

{
 
 

 
     0         ; for           Fm  ≤    Fm

min

Fm − Fm
min

Fm
max − Fm

min
  ; for    Fm

min  <  𝐹m  <    Fm
max 

       1          ; for            Fm  ≥    Fm
max

 

for maximization of objective functions where Fm
n  and μ

m
n  

are the value of the pth objective function in the nth Pareto 

solution. The membership functions are used to evaluate the 

optimality degree of the Pareto optimal solutions. The most 

preferred solution can be selected as follows: 

The weight values can be selected by the power system 

dispatcher based on the importance of the objective aspects. 

Therefore, the optimal solution is obtained by adopting the 

proper weight factors to get best Pareto optimal solution. 

For each solution in non dominated front set ′n′, the 

normalized membership function μ
opt
n  is calculated as  

μ
opt
n = max

{
 

 ∑ ωp,i .  μp,i
n

Nobj

i=1

∑ ∑ ωp,i .  μp,i
n

Nobj
i=1

M
p=1

  

}
 

 

           − −(18)  

where ′M′ is the number of Pareto solutions. The best 

compromised solution is the one corresponds to the value of 

‘μ
opt
n ’. 

V. RESULTS AND ANALYSIS 

The developed algorithm is tested on IEEE-30 bus system 

and the corresponding results for single, three and five 

objectives only are given in the following three cases. 

A. Case – 1 (Single objective) 

The control variable variation corresponding to the multiple 

objectives is given in Table 1. It is observed that the 

minimization of cost function results in increase of the 

emission by a factor of 0.7904, losses by 1.9874 and VSI by 

0.0448 (all factors are with respect to their minimized values). 

Table 1 reveals that the minimization of emission function 

results in increase of the cost by a factor of 0.1801, losses by 

0.0709, and VSI by 0.0185. Minimization of losses in the 

system increases the cost by a factor of 0.2089, emission by 

0.0119, and VSI by 0.1574. Similarly minimization of VSI 

results in increase of the cost by a factor of 0.01663, emission 

by 0.5745, and losses by 2.2839. In all the above cases there is 

no chance for getting loadability. But, from the last column of 

the Table 1, maximization of the loadability on a system 

results in increase of the cost by a factor of 0.7357, emission 

by 10.043, losses by 4.2387 and VSI by 0.59103. The 

important point is that, maximization of loadability on system 

increases the values of other objectives from their best values. 

The corresponding convergence patterns are shown in Fig 2. 

Table 1.  Control variables related to multiple objectives 

 
Cost, 

$/h 

Emission, 

ton/h 

Loss, 

MW 
VSI 

Loadability 

MW 

Pg1, MW 177.2293 64.0087 51.3909 156.901 195.4534 

Pg2, MW 48.5503 67.5944 80.0000 64.3043 80.00 

Pg3, MW 21.4629 50.0000 50.0000 19.0465 50.00 

Pg4, MW 21.2110 35.0000 35.0000 30.9689 35.00 

Pg5, MW 11.8819 30.0000 30.0000 10 30.00 

Pg6, MW 12.0002 40.0000 40.0000 12.0017 40.00 

 
Cost, 

$/h 

Emission, 

ton/h 

Loss, 

MW 
VSI 

Loadability 

MW 

Vg1, pu 1.1000 1.0927 1.1000 1.0162 1.0136 

Vg2, pu 1.0370 1.0825 1.04169 1.0099 0.9368 

Vg3, pu 1.0647 1.0572 1.08315 1.0264 0.9739 

Vg4, pu 1.0544 1.0685 1.08791 1.0491 1.0435 

Vg5, pu 0.9634 0.9442 1.0996 1.0977 1.0849 

Vg6, pu 1.1000 1.0935 1.1000 1.1000 1.1000 

Tap6-9, pu 0.9514 1.0151 1.0173 0.9000 1.0284 

Tap6-10, 

pu 
0.9910 0.9562 0.9689 0.9000 0.9443 

Tap4-12, 

pu 
0.9919 0.9949 0.9831 0.9000 1.0184 

Tap27-28, 

pu 
0.9679 0.9665 0.9704 0.9000 1.0013 

QC10 15.9744 17.7849 21.0731 30.000 14.1342 

QC24 10.4601 17.5381 11.6769 5.0000 22.1433 

Cost 800.1774 944.3457 967.4024 813.487 1388.881 

Emission 0.3664 0.2047 0.2071 0.3225 0.4103 

Loss 8.9355 3.2031 2.9909 9.8222 15.6692 

VSI 0.1321 0.1288 0.1464 0.1265 0.2012 

Loadability 0 0 0 0 0.4636 

In Table.1, the bold quantities can be constituted as pay-off 

table, and the corresponding e-constrained values are 

generated between these values. 

B. Case – 2 (Two objectives) 

To show the performance of the used methodology Cost and 

Emission objectives are combined together as an optimization 

problem and the obtained result are tabulated in Table.2. From 

this table it is observed that, minimum cost (892.0613 $/h) is 

obtained with the emission of (0.2126 ton/h) and maximum 

cost (899.5169 $/h) is with the emission of (0.2107 ton/h). It is 

clear that the generation cost increases as the emission 

decreases.  

Table.2: Multi-objective result for different weight factors 

(Cost-Emission) 

W1 W2 COST EMISSION 

0.9 0.1 892.0613 0.212559 

0.8 0.2 892.0613 0.212559 

0.7 0.3 892.0613 0.212559 

0.6 0.4 894.3731 0.211671 

0.5 0.5 895.0237 0.211486 

0.4 0.6 899.5169 0.210677 

0.3 0.7 899.5169 0.210677 

0.2 0.8 899.5169 0.210677 

0.1 0.9 899.5169 0.210677 

Table.3: Multi-objective result for different weight factors 

(Emission - Loadability) 

W1 W2 EMISSION LOADABILITY 

0.9 0.1 0.2135385 0 

0.8 0.2 0.2135385 0 

0.7 0.3 0.2135385 0 

0.6 0.4 0.2807102 0.16619 

0.5 0.5 0.3709212 0.32012 

0.4 0.6 0.3709212 0.32012 

0.3 0.7 0.3970462 0.33809 

0.2 0.8 0.3970462 0.33809 

0.1 0.9 0.3970462 0.33809 

Table. 3 reveals that, the minimum loadability of 0.16619 is 

with the emission of 0.2807 ton/h and maximum loadability of 

0.33809 is with the emission of 0.39704 ton/h. It clearly shows 

that the emission objective has a great impact on loadability. 

The corresponding Pareto values are shown in Fig.1.  
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Emission - Loadability 

Figure 1. Two dimensional generated Pareto-optimal fronts 

C. Case – 3(Three objectives) 

In this section, Cost-Emission-Loadability and Emission-

Loss-Loadability combinations are explained. Variation of the 

objective function values for these combinations is given in 

Table.4 and Table.5.  

Table.4: Multi-objective result for different weight factors 

(Cost-Emission-Loadability) 

W1 W2 W3 COST EMISSION LOADABILITY 

0.1 0.1 0.8 1233.736 0.393632 0.35591 

0.1 0.8 0.1 920.7645 0.213094 0 

0.8 0.1 0.1 816.1951 0.301356 0 

0.1 0.4 0.5 1239.747 0.347521 0.32532 

0.1 0.5 0.4 1124.198 0.300141 0.23172 

0.4 0.1 0.5 1149.806 0.365993 0.29272 

Table.5: Multi-objective result for different weight factors 
(Emission-Loss-Loadability) 

W1 W2 W3 EMISSION LOSS LOADABILITY 

0.1 0.1 0.8 0.382624 11.79525 0.35334 

0.1 0.8 0.1 0.230076 5.328916 0.02001 

0.8 0.1 0.1 0.213668 6.319546 0 

0.1 0.6 0.3 0.25605 7.653978 0.13913 

0.2 0.4 0.4 0.309046 11.09202 0.28237 

0.3 0.6 0.1 0.21629 5.457069 0.00093 

Table.4 reveals that maximum loadability (0.35591) is with 

the maximum cost of 1233.736 $/h and maximum emission of 

0.3936 ton/h. At minimum cost and minimum emission, there 

is no chance for getting loadability. It is observed that 

emission has a great impact on loadability, with little 

scarifying the emission objective, the loadability can be 

increased. From table.4, at maximum loadability (0.35334) the 

losses are 11.795MW, losses are increased by a factor of 1.22 

(with respect to its minimized value). At minimized emission 

there is no chance for getting loadability. Very less loadability 

(0.00093) is with the emission of 0.21629 ton/h and losses of 

5.45069 MW. The corresponding three dimensional Pareto 

solutions are shown in Fig. 2.  

 
(a) Cost – Emission – Loadability    

 
 (b) Emission – Loss – Loadability (LBI) 

Figure 2. Three dimensional best Pareto-optimal fronts 

D. Case – 4 (Four objectives) 

Cost, Loss, VSI and Loadability objectives are considered 

to formulate multi-objective optimization function. The results 

are tabulated in Table.6.  

Table.6: Multi-objective result for different weight factors 

(Four objectives) 
W1 W2 W3 W4 COST LOSS VSI LBI 

0.1 0.1 0.1 0.7 1343.18 15.4059 0.1485 0.42554 

0.1 0.1 0.3 0.5 1255.43 14.1844 0.1262 0.37709 

0.1 0.1 0.4 0.4 1131.372 11.4403 0.0974 0.23964 

0.2 0.2 0.2 0.4 1184.962 13.2902 0.1183 0.32939 

0.4 0.1 0.1 0.4 1020.483 12.1603 0.1177 0.19679 

0.7 0.1 0.1 0.1 808.5326 9.4108 0.1411 0 

0.1 0.7 0.1 0.1 897.7866 6.1689 0.1113 0 

0.1 0.1 0.7 0.1 1131.372 11.4403 0.0974 0.23964 

From Table.6, minimum cost is 808.5326, minimum loss is 

6.16894, minimum VSI is 0.097366 and maximum loadability 

is 0.42554. The increase in loadability increases the cost, loss, 

and VSI to greater values. Minimum loadability is 0.19679 

with the cost of 1020.483 $/h. Corresponding three 

dimensional Pareto optimal solutions by keeping one of the 

objective functions at constant is shown in Fig. 3. This figure 

shows the confinement of the generated Pareto solutions in the 

trade-off region. 

 
Figure 3. Three dimensional best Pareto-optimal fronts 

E. Case – 5 (Five objectives) 

In this section, all considered five objectives are combined 

together to form a multi-objective optimization problem. A 

total of 126 combinations are tested and the obtained results 

for some combinations are tabulated in Table.7. This shows 

the effectiveness of the used algorithm. 

Table.7: Multi-objective result for different weight factors 

(Five objectives) 

W1 W2 W3 W4 W5 COST EMI LOSS VSI LBI 

0.1 0.1 0.1 0.1 0.6 1348.17 0.39 16.47 0.19 0.426 

0.1 0.1 0.2 0.1 0.5 1191.11 0.37 11.09 0.17 0.313 

0.1 0.2 0.1 0.1 0.5 1348.17 0.39 16.47 0.19 0.426 

0.2 0.1 0.1 0.1 0.5 1348.17 0.39 16.47 0.19 0.426 

0.2 0.1 0.2 0.1 0.4 1191.11 0.37 11.09 0.17 0.313 

0.6 0.1 0.1 0.1 0.1 825.67 0.27 8.01 0.12 0 

0.5 0.1 0.1 0.2 0.1 816.076 0.30 8.09 0.12 0 

0.2 0.4 0.1 0.2 0.1 926.495 0.21 6.47 0.12 0 

From Table.7, the stated hypothesis is validated and there is 

a chance for getting loadability on a given system subjected to 
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the constraints and by scarifying other objectives 

simultaneously. Maximum loadability of 0.426616 increases 

the other objectives to greater values. The same value can also 

be achieved by changing the importance of the objectives. 

VI. CONCLUSION 

The used MOECO technique can solve multi-objective 

optimization problem subjected to given equality and 

inequality constraints. The obtained result supports that this 

method can be applied to the objectives namely, cost, 

emission, loss, VSI and loadability objectives towards its 

nature. The result confirms that, the requirement of the certain 

objectives can be met by scarifying other objectives 

simultaneously. By using this method the formulated multi-

objective optimization function has been solved within 20-30 

iterations. This method can handle different objectives based 

on its nature (i.e minimization/maximization of objectives 

simultaneously). The fuzzy decision making tool to select best 

Pareto front from the generated Pareto optimal solutions 

proves its effectiveness in selection of globally best solution. 

The proposed methodology works independent of nature of 

the objective functions and can be applied to any type of the 

objectives. 
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